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A day will come when, thanks to studies
extending over centuries, things which
today obviously appear obscure to us
will only cause our descendants' surprise
that such evident truths had escaped us.

-SENECA

INTRODUCTION

Usually a "genealogical tree" is conceived of as a tree in the sense
of graph theory whose branches spring from only one "root". The genea-
logical tree of game theory reminds one rather of the concept of a tree
in its original botanical meaning. It possesses numerbus ramified roots
originating in the remoteness of past centuries and developing into a
trunk - the book by J. von Neumann and O. Morgenstern - and a mighty
crown interlaced with the contemporary contributions to the theory of
games. The tree is just about to bear fruit, the practical crop being
yet to come.

Therefore, in the development of game theory, from a mathematized
to a mathematical discipline, there is a natural clagsification of the
historical progress into three periods. The first period - until the
appearance of J. von Neumann's and O. Morgenstern's monograph - may be
called "pre-monographic". At this stage a game appears as a concrete
contest described by its rules given in non-mathematical terms:- Only
at the end of this period did J. von Neumann elaborate the concept of a o
game as a general model of an abstract conflict. The outcome of this

epoch has been the accumulation of a series of concrete mathematical

results and even of certain principles of the future theory of games.
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The second period is constituted by J.von Neumann's and 0. Morgenstern's
monograph itself which incorporated most of the results obtained earlier
(which were, by the way, not too numerous according to present mathematical
ségndards). It has offered for the first time a mathematical approach to
games (both in the concrete and in the abstract sense of this word) in the
form of a systematic theory. In the history of mathematics only few books
can be found which, like J.von Neumann's and O. Morgenstern's monograph,
have established a complicated, important, and at the same time unconventional
mathematical discipline practically in the "empty space".

In its third stage game theory differs$ eventually only little in its
approach to the objects to be studied from other mathematical disciplines;
and develops at a considerable rate in\a way similar to all of them. Reslides,
it is clear that the specific characteristics of its actual, as well as
‘potential, applications have a decisive impact on the development of the
different branches of game theory.

%hat has been said also determines the general structure of this
survey article. Its chapters correspond to the historical periods of game
theory outlined above. Obviously, the present article cannot pretend to

be an exhaustive account of all facts which are important for the history

of game theory. That should be left to special investigations.



Chapter 1

BEFORE THE MONOGRAPH

§1: The Indeterminateness of the Outcome of a Game and Its Sources

1. Since games of the competitive type are models or imitations of
conflicts, an indeterminateness of outcome is usually characteristic. This
circumstance especially prompts those contestants who are doomed to defeat
from the beginning, to enter consciously into the conflict. And it is this
same circumstance that attract® both the participants in a competition and
its bystanders. Eventually, owing to this fact, each decision made by a
player in the course of a game turns out to be subject to indeterminateness.

Quantitative characteristics of indeterminateness as studied by the
theory of information ( or the theory of complexities) undoubtedly influence
decisilon-making under such conditions. In the framework of game theory,
however, these influences have been insufficiently explored and only some
episodical studies of game theoretic character have been dedicated to this
problem,

From a purely qualitative point of view the causes of indeterminateness

in the result of a game can be divided into three classes.

2. Let us begin with the case where the rules of the game allow for
such: a multitude of plays that an _a priori prediction of the outcome of each

play 1s practically impossible, while, in principle, abstracting from the




difference between potential and actual feasibility, no obstacle to such a
prediction exists.

Sources of indeterminateness of this type can be called combinatorial,

and games whose outcomes are unpredictable for these combinatorial reasons

can be called combinatorial games. Chess, for example, is a typical

combinatorial game.

Obviously, the combinatorial complexity of a game is of a historically
transitory character. The development of certain methods of playing a game
"correctly", sometimes generalized in the form of a suitable mathematical
apparatus, makes most variants of playing the game more and more transparent,
and the utilization of computing techniaues 1s extending the concept of
"transparence'" itself.

At present, several games are in different stages of this historical
process. Those games for which this process has come to an end practically
lose thelr competitive character and become merely entertaining; they may
still be, however, of some pedagogical and sometimes also scientific value.
That has happened, for instance, to the well-known 'Nim" games where the
players alternately take objects from some baskets according to the given
rules. These games can be completely formalized, and finding the winning
combinations (if such winning combinations exist) reduces to the solution
of not too voluminous logical problems.

Although the purely logical principles do not allow an extensive analysis
of other more complicated games, they often lead to some predictions of
general character. Eventually, in zames of a complexity comparable roughly

to that of chess, the logical considerations do not go bcyond the sphere of
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common sense ( which may be sometimes nevertheless rather acute), and the
aptitude of analyzing, evaluating and comparing large numbers of variants

becomes a central part of the art of playing a game,

3. The second source of indeterminateness in the outcome of a game

is the influence of chance factors. Chance can appear in a game either as

the result of certain '"natural forces" (dispersion of shots, meteorological
conditions, random causes of overflows in channels of mass service systems,
etc.) perform "randomized" acts organized in a special manner (tossing coins
or throwing dice, using tables of random digits, etc.).

Games whose outcomes are indeterminate solely by virtue of chance are

called games of hazard. Typical examples of games of hazard are games of

dice of any variety and also the game "Matching Pennies" in the special form
where one player tosses a coin and his adversary tries to guess the side it
shows. A game of pure hazard is also the well-known roulecte. There 1is
nothing to be said about the correct or optimal behavior of a player in a
game of hazard: The outcome of the game does not depend on his actions.

The only decisions the player is able to make concern the advisability of his
participation in or his absence from a game depending on its rules. Such
decisions belong however to a considerable degree to the psychological shpere

(see 1.3.4 %)),

*) Here and further, references to parts of this article are denoted as
above. In references tou j. von Neumann's and O. Morgenstern's mono-
graph the work "Chapter", the symbol "§", and the letter "i", are used
in front of the respective numbers of chapters, paragraphs, and items.
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Of course, games can be found which combine features of both
combinatorial games and games of hazard., To this class of games belong, for
example, Backgammon (Tric-Trac) with its presently rather numerous variants
and also various kinds of card solitaires where the indeterminateness is
created on the one hand by the chance arrangement of cards in the card deck,
and on the other hand by the combinatorial complexity of the configurations

made up by the uncovered cards on the table.

4. The third source of indeterminateness in the outcome of a game is

of strategic origin: The player may not know what action his adversary

chooses. Contrary to the two previously mentioned sources of indeterminateness,
this one 1s founded in the very nature of a game. It originates from the

other participants in the game which may be real ( man, collectivity) as well
as conditional (nature, circumstances). Games in which the indeterminateness

of the outcome stems from the indicated strategical causes are called

strategic games. Strange as it may seem strategic games in their pure form

are relatively rare. The simplest example of a strategic game 1s the game
"Matching Pennies" in the form where two players independently of each other
put a coin on the table. If both coins show the same side the first player
wins, otherwise the second. Despite all its primitivity this game appears
to be in some respect "more difficult" than, say, chess. A play of chess
takes place on an open board, and it is possible to imagine an "ideal player"
who overlooks all possibilities emerging from each position. Each move
thought through by one of the players is deliberated to the same extent by

his opponent. 1In contrast to that, in the described game '"Matching Pennies"




a player 1s unable in principle to recognize what his adversary has done.
It is especially this feature that makes such a game a strategic one.

As to the correctness and optimality of the behavior of a player,
matters here are essentially more complicated than in the previously
described cases. It is obvious that putting the coin heads or tails cannnot
per se mean good or bad behavior, for as N. Wiener has remarked,"...the
efficacy of a weapon depends on precisely what other weapons there are to
meet it..." /1/.

Actually, in strategic games optimal behavior is randomized. Applied
to "Matching Pennies'" this means that it is not advisable to put the coin
on the table showing a specific side, but to toss it in such a manner that
each of its sides can fall with equal chances.

The strategic property of a game can be combined with a combinatorial
property ("kriegsspiel"” - a kind of chess where each player playing on his
own board sees only his figures and an umpire removes them in case of their
capture, announces checks, and decides on checkmate or stalemate), or a
hazard property (poker), or with both combinatorial and hazard properties
at the same time ('Preference'" - where the hazard property comes from the
chance deal of cards, the strategic property results frcm the prescriptions
of the game and the determination of '"pairing'", and the combinatorial property
comes from the difficulty to orientat=2 oneself in the cards even if they are

uncovered) .




§2: Combinatorial Games

1. Evidently, combinatorial games in the form of mathematical prob-
lems made their first appearance at the beginning of the seventeenth centurv.
The well-known "Problemes Plaisants et Délectables, qui ses font par les
Nombres'", published by Bachet de Méziriac in 1612 /1/, contains a problem of
the following sort: Two players alternately name numbers from one to ten,
and the player who arrives first at 100 with the numbers added up wins.

The solution of this game causes no troubles: A player can he sure
of winning 1f he succeeds in making the sum of all numbers named eaqual to
100 - 1la. Accordingly, after each step of his opponent, he has to choose a
number being a complement to 11. As a matter of fact, by naming number one
at his first step, the beginning player can force his conquest. This game can

obviously be interpreted as a process of alternately taking away one to ten

objects from a basket originally containing 100 objects. ’
The Chinese game '"Fan-Tan' seems to be more complicated. In this ’i
game, the players have to cope with three baskets filled with certain ob-
jects, and at each move the respective plaver has to choose an arbitrary
number of obj.cts from an arbitrary basket. The player who takes the last
object wins. The complete theory of this game has been published in 1902
by C.L. Bouton /1/.
This type of game in its more general form is called "Nim", and
it 18 of the following structure: There are given n baskets with certain
objects. Each of both players, who are alternately coming in, chouses p has-

kets and from each of these he takes an arbitrary number of objects. The

player taking the last object wins. An analysis of this game has heen given




by E.H.Moore in 1909 /1/.

Moore's arguments utilize in fact the following consideration: It
can be shown that for every game of the type ''Nim" it is possible to obtain
in an obvious way some class of positions possessing the so-called properties
of external and internal stability. The first property means that whatever
the position not belonging to the class investigated is, there exists a step
leading from it to a position in our class. The second property consists in
fact that each move made in a position of this class leads outside. In this
way, 1f the class described contains the winning position ( and in games of
"Nim" the player who takes the last objects wins), each position in this
class can be regarded as winning.

In particular, in Bachet de Méziriac's game those positions in which
it was possible to represent the sum of chosen numbers in the form 100 - 1la
turned out to be the class of winning positions.

The concept of dual stability introduced above has proved extremely
fruitful in game theory. We will come back to this concept repeatedly later

on.

2. With the increasing combinatorial complexity of a game, plainly
determining the set of all winning positions (in the sense described above,
i.e., possessing the property of dual stability) becomes more and more difficult.
For a game like chess this turns out to be practically impossible. Therefere,
in the mathematical analysis of combinatorially complicated games, efforts
shift from the search for the set of winning positions to proving the existence

of such sets.
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This way has been chosen by E.Zermelo. In 1912, at the Fifth
International Congress of Mathematicians, he presented his paper "Uber eine
Anwendung der Mengenlehre auf die Theorie des Schachspiels" /1/, in which
he proposed the following approach to conbinatorial games.

Consider a game with a finite set of positions (Zermelo, for the sake
of security, speaks only of chess, but he has all similar games in extensive
form in mind) . Positions that differ only with respect to which player's
turn it 1s to move are regarded as different.

"end games' where

For each position q we introduce a set Ur(q) of such
White can force his victory in not more than r moves. Here the possibility
of forcing a victory is to be understood in the following sensc.

Let some end game [ = (q, ql, Qps +ee ) belong to the set Ur(q), q.
being some position in Z where it is Black's turn to move, and he moves from

qy to the position %41 Let us consider another position which,

’ q>'\+1»

according to the rules, can also be reached by Black from g Then among

A
the end games in Ur(q) an end game ' can be found that starts with the
positions q, ql, s (ol qk, qi_l. The possibility for White to force his
victory from q in r steps means that U (q) # @ .

If the total number of all possible positions in the game equals t,
then from White's possibility in position q to force his conquest in a finite
number of moves follows an analogous possibility of victory in not more
than t moves. Thus White's possibility tr win in position q is equivalent

toU@ =U @ #9.

In a similar way, the set V(q) O U(g) of end games beginning in q,
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where White 1s able to force a tie, is determined. A tie is attainable
for White 1f V(@) # @ . If V() =@ , then in position q Black forces the
victory.

By means of this argument Zermelo showed that in each position q one
of three possibilities exists: Either White can guarantee himself the
victory (if U(g) # ), or he can force a tie but not a victory (i.e.,
Black can guarantee himself a tie but not the victory, this happens, when
U@ =9, but V(qQ) # @), or the victory can be forced by Black (if V() =0 ).
The same question may also be asked for the starting position. As Zermelo
has pointed out, an answer to this question would deprive chess completely

of its game character.

3. 1In 1925 Steinhaus published his article "A Definition for a Theory
of Games and Pursuit" which for years had been known only to a small circle
until it appeared in 1960 in an English translation (under the above title).
In this article Steinhaus introduced (for the sake of security again applied
to chess) the concept of a "method of playing' as a "list of all eventualities
with a preferable move for each of them'". The best strategy is regarded as
that method which minimizes the maximum number of steps one's adversary can
persevere. In fact, the ideas of a strategy and a maximin-principle are
already contained in these definitions.

In his paper, Steinhaus examined neither the questions of existence
nor of finding the best strategles referring them to another class of problems
(according te the general hierarchy of problems given at the beginning of his

paper) .
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4. In Zermelo's considerations, the transition from forcing the
victory in a finite number of steps to forcing the victory in a bounded
number of moves has not been duly proven. In 1927, D. Konig /1/ has given
a precise proof of this proposition on the basis of one of his theorems from
the theory of infinite graphs. The possibility of applying this theorem to
games has been pointed out to him by J. von Neumann, It was apparently in
that paper that J. von eumann's name was mentioned for the first time in
connection with games. By the way, J. von Neumann had already shown his
interest in problems of games earlier. More details about that will be given
in I.4.1.

For the sake of fairness it must be noted that Zermelo, when he became
acquainted with Kdnig's paper before its publication, offered his own
independent, extremely brief and elegant version of the lacking proof described
by Konig in the appendix to his article /1/. According to Konig, the proof

based on this idea had been krown also to J. von Neumann.

5. All in all, Konig's proof does not rely on the condition of
finiteness of the number of possible positons in the game, but only on the
weaker condition of finiteness of the number of positions attainable in one
move from a given position and thereby in n moves for an arbitrarily fixed
natural n . As an example for such a game he has used a game played with
ordinary chessmen on an unbounded board.

The consequent step in this direction has been made by L. Kalmar who
dropped the condition of finiteness of the number of positions attainable

from a given position in one move.
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6. The formalization of the argumentation referring to the dual
stability of winning sets in two-person games in extensive form with alter-
nating moves has been carried out by P. Grundy /1,2/. A pair of positions
in a game that differ only with respect to which player's turn it is to move
is called a diagram. Let us denote the set of all possible diagrams in a
game by X. If we represent each diagram by a point and connect it by
directed arcs with all those diagrams which can be reached in one step from
the given one, then we obtain an orientated graph, denoted by (I, X). Let
us attach the payoff of a player to the end diagrams of this graph (i.e., those
diagrams from which one cannot pass to other diagrams).

Let each player win (we limit ourselves to the description of a case
that may be called symmetric) in diagrams of the set K at his move, and
in diagrams of the set L at his opponent's move. This determines a game
denoted by (T, X, K, L).

The function g, defined on the set of all diagrams whose values are

non-negative integers, is called Grundy function 1f it possesses the following

properties:
0 for xe L,
gx) = 1 for xeKk,
the smallest non-negative 1integer *)
different from g(y) where y € I'x.
Let there exist a Grundy function for a given game ( I, X, K, ). For

this, as M. Richardson /1,2/ has subsequently shown, it is sufficient that

*) Translator's note: The author speaks here of '"natural number', but
trom the following argumentation obviously fellows that he really
means ''non-negative integer'.
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in the graph ( I, X) both the set T x and the set of all yeX, for which
xely, are finite, for any xeX, and likewise that this graph does not contain
contours of odd length.

The set of those diagrams where the Grundy function takes on the value
zero possesses the property of dual stability.

Let us then assume that some player (say, the first) succeeds in
attaining by one of his moves a diagram a, for which g(a) = 0. Now the
second player chooses a diagram bela. But, according to the definition
of a Grundy function, the value g(a) being equal to zero differs from all
numbers g(z) for zela. In particular, g@) # O must hold.

We see that it is not possible to perform a transition within the
set of zero-Grundy function *) in one step. This property of the set is
called its internal stability.

Let now the first player be in position b such that g(®) # 0. He

chooses some ce€lb. If among the diagrams b no diagram 2z, for which, g(z) = 0

could be found, then g ®) = 0 would follow, which, however, does not hold.
Consequently, there exists a c¢t€Ib such that g(c) = 0.

This means that it is always possible to Ppass from cutside the set of
zero~-Grundy function into this set by one step. This property of the set is
called its external stability.

Thus, the first player once being in the set of zero-Grundy function
has the possibility not to leave this set. Thereby he either carries the game
into the set L or prevents it from terminating.

*) I.e., the set of diagrams on which the Grundy function takes on the
value zero (translator's note).
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53; Games of Hazard

1. The chance factor is the prominent one in all games of hazard
(1t may be helpful to remember that in French "hazard" means "chance event"
and stems from the Arabic word "azar" - az-zahr signifying "difficult";
originally this expression had been used to characterize the rarest event).
Above all games of dice can be reckoned as hazard games. For a long
time several variants of these games had been the main source of problems
in the theory of probability and its only field of application. We observe
that throwing dice had not only been practised for competitive purposes, but
also for soothsaying where every combination of eyes had its own meaning.
Let us turn to the following two circumstances. In an overwhelming
majority of hazard games (accordingly also in games of dice) chance does not
emerge as a spontaneous action of some "elemental" forces, but as the result
of conscious acts of people participatins in the game. Moveover, the use
of dice for soothsaying means that randomizing arrangements had been accepted

for the resolution of problems of decision-making.

2. The first discussion of probability and to some extent even calcu-
lations concerning various outcomes of throwing dice can apparently be found
in Cardano's treatise "On Hazard Games" (see for instance H.G. Zeuthen /1/,
P. 168), and an exhaustive analysis of the probabilities of various outcomes
of casting three dice is contained in Galilei's study "On the Outcome of
Eyes in Games of Dice" (see the article by Maistrov /2/).

Then, only half a century later, there is the well-known exchange of

letters between Pascal and Fermat, where (in Pascal's letter to Fermat from

;Eﬁmm
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from July 29, 1654) the solution to de Méfé’s problem was discussed. It

is regarded, according to a general tradition, as the origin of the math~
ematicel theory of probability. About this time (1657) Huygens finished his
treatuse '"On Calcuation in Games of Hazard" /1/, where he writes among other
things: '...when studying the subject carefully the reader will observe
that he is dealing not only with a game, but there are given the fundamentals

of a deep and extremely interesting theory."

Only fourteen years later,
however, Jean deVitte applied the probability calculus to the calculation of
the values of 1life interests, and from then on probability theory as a branch
of mathematics has left its association with games and has begun an independent

existence. As to the role of hazard games in the rise of probability theory

se Maistrov's paper /1/.

3. If the player's aim in a combinatorial game is winning it and
optimal actions or strategies of the player are regarded to be those which
assure him this win, then under conditions of a hazard game no skill (that
does not transgress the rules of the game) can guarantee the player the
desired outcome which depends besides other factors also on chance. For
that reason, the player cannot by merely choosing a strategy, obtain a fixed
amount. Here the purpose seems to be much more complicated.

The tendency to maximize the payoff which he expects to receive seems
most natural for the player. The quantitative evaluation of the hopes of the
players in several games (actually under conditions of an unfinished match
consisting of various plays) had already been subject of a controversy between

Cardano and Lucca Paccioli in the sixteenth century (see Zeuthen /1/, p.168),
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and a century later in Pascal's above mentioned letter it had been taken
as a basis for a "fair" division of stakes not payed out. Huygens arrived
independently of Pascal and Fermat at a similar result expressed in a much
more general form which allows us to speak of the mathematical expectation.
Thus the maximization of the mathematical expectation of the payoff
turned out to be the leading principle for the participant in a game of
hazard. Later on, Laplace /1/ included this principle in his collection
of "fundamental principles of the calculus of probabilities" (principle VIII)
and formulated it as follows: '"If an advantage depends on many events, then
by taking the sum of the products of the probabilities of each event that is

randomly connected with its occurrence one obtains this advantage."

Laplace
declared that this advantage means the mathematical expectation. On these
grounds the idea of a harmless game as a game where the mathematical expectation
of the gains of every player is zero at the beginning has emerged.

If one chooses to deal with games of hazard from the point of view of
maximizing the mathematical expectation of gains, they can in principle be
exhaustively analyzed by means of probability theory. The difficulties one

may meet will be of a purely technical character. We will therefore not dwell

upon further mathematical discussions of hazard games based on this principle.

4., An uncritical application of the principle of maximization of the
mathematical expectation may lead to paradoxical results. The first example
of auch a paradox has been given by Nikolaus Bernoulli and has been named
"St. Petersburg Paradox'. It is of the following kind.

Two players flip a coin till "tails" turns un. If "tails" appears for
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the first time at the n'P throw the first player receives from the second
2" units. The mathematical expectation of the payoff for the first player
is infinite. Therefore, whatever is the amount of his original stake, the
game will never be "harmless' but advantageous for him. This conclusion is,
however, not in accord with "common sense', for the second player's capital
is practically limited and even through adjourned plays the first player
will not be able to get his due gain. Besides, the first player's 'capability
of appropriation" is also limited. Therefore, at sufficiently Jlarge n a
gain of Zn with probability (1/2)n is prefe. .ible to a gain of 2n+1 with
probability (1/2)n+1: Both gains are ''practically equally huge', but the
probability of the first is greater than that of the second.

The two objections quoted are essentially different. The first is more
formal and can be just as formally abandoned if one identifies potential and
actual realizability.

The second objection is notwithstanding its apparent deliberations
more substential: It reflects the é¢ircumstance that an increase in utility
arising from an increase in the monetary gain does not only depend on this
increase, but also on the abhsolute size of the gain.

Daniel Bernculli (Nikolaus Bernoulli's nephew) assumed that the utility
of an increase dx in the gain were directly proportional to dx and
indirectly proportional to x. As it can easily be seen this is equivalent
to the statement that the utility of the monetary gain be proportional to its
logarithm. From this follows that gaining a certain amount of utility and
losing it afterwards 1s just as profitable for the player as losing and then
regaining 1t, for in both cases he loses a smaller part of his capital than he

obtains. This statement is also toc some extent paradoxical. In any case, it

pEas
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is possible to find evident arguments in favor of and against it.

Measuring utility on such a logarithmic scale leads to the replacement
of the mathematical expectation by the ''moral expectation' which should be
better called "psychological expectation". Such a measurement of utility is
also included by Laplace in his principles of probability calculus (principle
X), who qualifies it, however, only as a principle "that might be useful in

many cases'’.

5. The theory of hazard games has been developed in its most general
and perfect form by L. Dubins and L. Savage in their monograph /1/. They
have formulated the fundamental problem of the theory as that one of finding
the optimal behavior of a player, who, at the beginning of a game, can dispose
of a certain sum and possesses a given utility function.

The most essential point 1s that classical probability distributions
(1.e., countably additive probabilities) have turned out to be inadequate for
a complete déscription of phenomena arising in games of hazard. For that
reason Dubing and Savage have found it necessary to develop a more general
theory - finitely additive discrete stochastic processes.

In the following we will see that finitely additive probability

distributions are important for games of strategy too.

g§4: Games of Strategy. E. Borel's contribution

1. In contrast to both the combinatorial and chance aspects of games
whose mathematical development roots in the remoteness of centuries, the

strategic problems of games have a considerably shorter history.
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